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Presentation Outline

« Context and Motivation

 Heat Reuse Scenario

 DC Thermal Model

« DC Flexibility Management and Optimization
* PD 2019 CoolDC Project
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Context and Motivation

Data Center

Smart thermal and energy grids integration
Achieve cost-effectiveness
Participation in demand response programs
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Heat Reuse Scenario

* Optimize DC operations to deliver
heat to the local heat grid.

« Recover, redistribute and reuse DC
residual heat for building space heating
(residential and non-residential such
hospitals, hotels, greenhouses and

71 S
pools), service hot water and industrial

pI‘OCGSSGS Greenhouse EN

« DC participates to the local Heat
Marketplace trading heat and as such
creating a new revenue source over
longer period for the DC.

IFT=
* In doing so, the DC achieves T
significant energy & cost savings, industry _A3)
reduces its COZ emissions, contributes Thoiade
to reducing the system-level
environmental footprint and supports
smart city urbanization.

Processor
60°C

4
O
-
-
<
-
=
O
O
-
o
2
L
LLl
-
-
-
o
LLJ
Ll
2
2
<
o
-
n
<T
LLJ
%
-
LLJ
O
o
LLJ
o

TTTTTTT
CCCCCCCCCCC



Heat Reuse Scenarios
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Air-Cooled DC
Thermal Model

» Develop a Digital Twin of the Internal
processes of the DC to allow proactive
control and planning

» Use a System-of-Systems recursive
modeling methodology
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Distributed Air-Cooled DC
Thermal Model

Hot Air

! : ! TRoom(t)
@ Wallocation
Server Heater

Digital Twin Room

Server Heater
Micro
datacenter

Micro
datacenter

Tsetfpoint

Heat Aware Load Balancer

Black-Box

Workload = {Task,, Task,, ..., Task,} M Od e |

M X cy X (Tsot—point — T,
a ( setA;)omt ROOM) _Pserver(o)
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Distributed
Air-Cooled DC
Thermal Model

Hot Air

Server|Room

Model Type Model Description

. . The basic linear regressor was used to determine the baseline for
Linear Regression .
prediction accuracy

A second-degree polynomial regressor. Multiple degrees were
considered, but the validation score began to drop after the
degree was set to 2.

90 estimators with a maximum depth of 4. The samples had a
minimum split of 5 and the learning rate was 0.1. The loss was
computed using the least-squares method.

Polynomial Regression

Gradient Boosted
Regression
9 estimators with a maximum depth of 4 are defined.
Regression
A support vector regressor with kernel type of radial basis
function and parameters: C = 100,y = 0.01,e = 0.1
The K-Nearest Neighbors Regression with 2 neighbors and
uniform weights.

Multi-Layer Perceptron having one input layer, two hidden layers
of 128 and 256 neurons, and one output layer. The activation
function for the hidden layers is of type Rectified Linear Units

(ReLU), and 500 epochs were used for training. The loss function

was the mean squared error and the optimizer ADAM. Early
stopping was employed with the patience of 50 epochs and a
minimum validation loss as the monitor.

Support Vector
Regression

K Neighbors Regression

Deep Learning
Regression

Tset—pomt

P, server (t) Tserver (t) TROOM (t)

Monitor Data

Monitored data

tl - Tset—pomt (tl): PServe‘r (t1); Tserve‘r (t1); TROOM (tl)

tp = set—point (tz): PServer(tz): Tserver (tz): TROOM(tz)

i — set—point (tn); PServer (tn)z Tserver(tn)z TROOM(tn)

. Pearson’s Coefficient
Determine relevant

— Cov(TSETHETl TROGM)

samples by window
. T TrooMm
applying server OTserver TTRoOM
correlation factor
" T
1.l e Troom

= : - Generate
- TrainingData

— -

TSETV&T

P.S‘erver
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TRDUM(tl);Rserver(tl); T:server{tl) - ‘C.'se‘rver(tl + 1) P.E‘erver(tl + T)

Troom(t2), Pserver(t2), Tserver(t2) = Prerver(tz + 1) . Pserper(t2 +T) -

TRUUM (tn);‘cfserver (tn); T.‘;eruer (tn) - Rqerver (tn + 1) P.E‘eruer (tn + T)



Distriputed S
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g %0 Deviation
g7 14.4. 0.89 -0.66 14.04 8.62 13.36
= e eaamill_Polynomial Regression XNV 0.39 2.05 29.19 23.38 13.65
e EemsmliliRandom Forest Regressorji (VR0 0.92 -2.06 9.55 7.6 5.06
| | | i | | Gradient Boosting [T STV 112 10.32 714 474
Regressor
| L s VR 1628  0.85 233 15.02 9.71 6.89
100 Regression
7 % K Neighbors Regressor 13.7 0.84 1.09 12.85 10.54 6.27
¥ o] Multi-Layer Perceptron g 1 1.92 24.54 2062  17.29
H Deep Neural Network
60 —— Predicted Server Power
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Liquid-Cooled DC
Thermal Model

Gray-Box model to predict power-temperature correlation
glost(t) Tout &
dTs q—MCwater&(Ts—Tco1d)

Thot(t -
ott) ‘____Ts(t) dt CS

Twater-out(t)

ATco1a _ [ETs+(1-8)T co1alUA+UAT oyt . (UA+ua)T¢co14

‘ .6 «q(t) dt Mcyater Mcyater
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ne Experimental Platform to validate results 5 = 5| =
i « FROSTFLOW 120 liquid cooling units on two PCs | I = T_erzzssrztr“re
G — e equipped with Intel i3 540 processors and 8 GB = =
£ RAM memory. =
N * insulated vessel containing M=4 kilograms of water. Radiator @l Radiator =
= * set of temperature sensors %
 3-7% MAPE error for temperature prediction
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Liquid-Cooled DC
Thermal Model

Feasibility Study - Household

We consider that M=150 kg of water is enough for a two-
person household. This quantity fits into a cylindrical
tank with a surface area of a=1.67 m2. The helical pipe
inside the server has approximatively A=1.2 m? external
area where the heat exchange takes place. We have
concluded that for initial and ambient temperatures of
7°C, using 9 processing units linked in parallel, 10 hours
are needed for the tank water to reach 59.5°C, the
maximum heatsink temperature being 65.47°C

60 4 —— Boiler Water Temperature
Server Temperature
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Feasibility Study — Swimming Pool

A pool, with a capacity of M=30000 kg (approximately 30000 L)
of water. Again, the water is place in an isolated tank, which this
time has an external surface area of approximatively a=59.48 m? (a
diameter of 3.92 m and a height of 2.87 m). As we would need 100
processing units, the piping’s heat transfer surface area reaches
approximatively A=4 m?. Starting from an initial temperature of
15°C and an ambient temperature of 20°C, the processing units
would need 120 hours to take the tank water’s temperature to
25.9°C. Their heatsink temperatures would not exceed 32.57°C.
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DC Flexibility Management and Optimization

« Self Adaptive Scheduler as an extension of the IBM MAPE-K architecture

MoSiCS Optimization and PIanninE throuEh Adaptability

Analysis Stage
computes
predictions of the Predicted Inputs
future system fomes
inputs based on
historical data

DMCS of Real World System

Outputs Demand Point

ODMCS
SIMULATOR Odemand

Partial Solution:
Valid Action Plan
Prediction Module

Control Search Space

Heuristic Objective Function

Monitoring

DEELET Optimization Module

Optimal Action Plan
Pop timal

Execution Module ome \' P I ann i n g Stage
computes an

optimal plan by

Historical Data

Monitoring Module
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PD 2019 CoolDC Project

ool

* Facilitate the transition to liquid cooling systems

* Project Objectives:

Study the correlation among workload distribution, temperature setpoints, thermal flexibility of
DCs with liquid cooling and DH heat demand aiming to assess the heat re-use potential

Development of models for estimating the baseline heat profiles and forecasting the thermal
flexibility of DCs featuring liquid cooling

Development of novel hybrid optimizer for thermal aware workload scheduling to shift thermal
flexibility and maximize the quality of the heat to be re-used
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